Plants that use crassulacean acid metabolism (CAM) have the potential to meet growing agricultural resource demands using land that is considered unsuitable for many common crop species. Agave americana L., an obligate CAM plant, has potential as an advanced biofuel crop in water-limited regions, and has greater cold tolerance than other high-yielding CAM species, but physiological tolerances have not been completely resolved. We developed a model to estimate the growth responses of A. americana to water input, temperature, and photosynthetically active radiation (PAR). The photosynthetic response to PAR was determined experimentally by measuring the integrated leaf gas exchange over 24 h after acclimation to six light levels. Maximum CO2 fixation rates were observed at a PAR intensity of 1250 μmol photons m-2 s-1. Growth responses of A. americana to water and temperature were also determined, and a monthly environmental productivity index (EPI) was derived that can be used to predict biomass growth. The EPI was calculated as the product of water, temperature, and light indices estimated for conditions at a site in Maricopa (Arizona), and compared with measured biomass at the same site (where the first field trial of A. americana as a crop was completed). The monthly EPI summed over the lifetime of multi-year crops was highly correlated with the average measured biomass of healthy 2- and 3-year-old plants grown in the field. The resulting relationship between EPI and biomass provides a simple model for estimating the production of A. americana at a monthly time step according to light, temperature, and precipitation inputs, and is a useful tool for projecting the potential geographic range of this obligate CAM species in future climatic conditions.
CITATION STYLE
Niechayev, N. A., Jones, A. M., Rosenthal, D. M., & Davis, S. C. (2019). A model of environmental limitations on production of Agave americana L. grown as a biofuel crop in semi-arid regions. Journal of Experimental Botany, 70(22), 6549–6559. https://doi.org/10.1093/jxb/ery383
Mendeley helps you to discover research relevant for your work.