Automatic imagery data analysis for diagnosing human factors in the outage of a nuclear plant

10Citations
Citations of this article
33Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Nuclear power plant (NPP) outages involve maintenance and repair activities of a large number of workers in limited workspaces, while having tight schedules and zero-tolerance for accidents. During an outage, thousands of workers will be working around the NPP. Extremely high outage costs and expensive delays in maintenance projects (around $1.5 million per day) require tight outage schedules (typically 20 days). In such packed workspaces, real-time human behavior monitoring is critical for ensuring safe collaboration among workers, minimal wastes of time and resources due to the lack of situational awareness, and timely project control. Current methods for detailed human behavior monitoring on construction sites rely on manual imagery data collection and analysis, which is tedious and error-prone. This paper presents a framework of automatic imagery data analysis that enables real-time detection and diagnosis of anomalous human behaviors during outages, through the integration of 4D construction simulation and object tracking algorithms.

References Powered by Scopus

Multiple object tracking using k-shortest paths optimization

887Citations
N/AReaders
Get full text

Computer vision techniques for construction safety and health monitoring

443Citations
N/AReaders
Get full text

Real-time construction worker posture analysis for ergonomics training

246Citations
N/AReaders
Get full text

Cited by Powered by Scopus

Human-centered automation for resilient nuclear power plant outage control

30Citations
N/AReaders
Get full text

Interactive mechanism of working environments and construction behaviors with cognitive work analysis: an elevator installation case study

17Citations
N/AReaders
Get full text

Predictive nuclear power plant outage control through computer vision and data-driven simulation

10Citations
N/AReaders
Get full text

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Tang, P., Zhang, C., Yilmaz, A., Cooke, N., Boring, R. L., Chasey, A., … Buchanan, V. (2016). Automatic imagery data analysis for diagnosing human factors in the outage of a nuclear plant. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 9745, pp. 604–615). Springer Verlag. https://doi.org/10.1007/978-3-319-40247-5_61

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 14

56%

Researcher 5

20%

Professor / Associate Prof. 4

16%

Lecturer / Post doc 2

8%

Readers' Discipline

Tooltip

Engineering 15

63%

Computer Science 7

29%

Design 1

4%

Immunology and Microbiology 1

4%

Save time finding and organizing research with Mendeley

Sign up for free