An efficient electromagnetic interference (EMI) shielding paper with excellent water repellency and mechanical flexibility has been developed, by assembling silver nanowires (AgNWs) and hydrophobic inorganic ceramic on the cellulose paper, via a facile dip-coating preparation. Scanning electron microscope (SEM) observations confirmed that AgNWs were interconnected and densely coated on both sides of the cellulose fiber, which endows the as-prepared paper with high conductivity (33.69 S/cm in-plane direction) at a low AgNW area density of 0.13 mg/cm2. Owing to multiple reflections and scattering between the two outer highly conductive surfaces, the obtained composite presented a high EMI shielding effectiveness (EMI SE) of up to 46 dB against the X band, and ultrahigh specific EMI SE of 271.2 dB mm-1. Moreover, the prepared hydrophobic AgNW/cellulose (H-AgNW/cellulose) composite paper could also maintain high EMI SE and extraordinary waterproofness (water contact angle > 140°) by suffering dozens of bending tests or one thousand peeling tests. Overall, such a multifunctional paper might have practical applications in packaging conductive components and can be used as EMI shielding elements in advanced application areas, even under harsh conditions.
CITATION STYLE
Ren, F., Guo, H., Guo, Z. Z., Jin, Y. L., Duan, H. J., Ren, P. G., & Yan, D. X. (2019). Highly bendable and durable waterproof paper for ultra-high electromagnetic interference shielding. Polymers, 11(9). https://doi.org/10.3390/polym11091486
Mendeley helps you to discover research relevant for your work.