High-speed X-ray imaging of the Leidenfrost collapse

10Citations
Citations of this article
25Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The Leidenfrost layer is characterized by an insulating vapor film between a heated surface and an ambient liquid. The collapse of this film has been canonically theorized to occur from an interfacial instability between the liquid and vapor phases. The interfacial instability alone, however, is insufficient to explain the known influence of the surface on the film collapse process. In this work, we provide visual evidence for two key mechanisms governing the film collapse: the interfacial instability, and the nucleation of vapor upon multiple non-terminal liquid-solid contacts. These results were obtained by implementing high-speed X-ray imaging of the film collapse on a heated sphere submerged in liquid-water. The X-ray images were synchronized with a second high-speed visible light camera and two thermocouples to provide insight into the film formation and film collapse processes. Lastly, the dynamic film thickness was quantified by analysis of the X-ray images. This helped assess the influence of surface roughness on the disruption of the film. The results of this work encourage further investigation into non-linear stability theory to consolidate the role of the surface on the liquid-vapor interface during the film collapse process.

Cite

CITATION STYLE

APA

Jones, P. R., Chuang, C. (Andrew), Sun, T., Zhao, T. Y., Fezzaa, K., Takase, J. C., … Patankar, N. A. (2019). High-speed X-ray imaging of the Leidenfrost collapse. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-018-36603-w

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free