Chemical Design of Both a Glutathione-Sensitive Dimeric Drug Guest and a Glucose-Derived Nanocarrier Host to Achieve Enhanced Osteosarcoma Lung Metastatic Anticancer Selectivity

86Citations
Citations of this article
68Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Although nanomedicines have been pursued for nearly 20 years, fundamental chemical strategies that seek to optimize both the drug and drug carrier together in a concerted effort remain uncommon yet may be powerful. In this work, two block polymers and one dimeric prodrug molecule were designed to be coassembled into degradable, functional nanocarriers, where the chemistry of each component was defined to accomplish important tasks. The result is a poly(ethylene glycol) (PEG)-protected redox-responsive dimeric paclitaxel (diPTX)-loaded cationic poly(d-glucose carbonate) micelle (diPTX@CPGC). These nanostructures showed tunable sizes and surface charges and displayed controlled PTX drug release profiles in the presence of reducing agents, such as glutathione (GSH) and dithiothreitol (DTT), thereby resulting in significant selectivity for killing cancer cells over healthy cells. Compared to free PTX and diPTX, diPTX@CPGC exhibited improved tumor penetration and significant inhibition of tumor cell growth toward osteosarcoma (OS) lung metastases with minimal side effects both in vitro and in vivo, indicating the promise of diPTX@CPGC as optimized anticancer therapeutic agents for treatment of OS lung metastases.

Cite

CITATION STYLE

APA

Su, L., Li, R., Khan, S., Clanton, R., Zhang, F., Lin, Y. N., … Wooley, K. L. (2018). Chemical Design of Both a Glutathione-Sensitive Dimeric Drug Guest and a Glucose-Derived Nanocarrier Host to Achieve Enhanced Osteosarcoma Lung Metastatic Anticancer Selectivity. Journal of the American Chemical Society, 140(4), 1438–1446. https://doi.org/10.1021/jacs.7b11462

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free