Ring relations and mirror map from branes

8Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We study the space of vacua of three-dimensional N = 4 theories from a novel approach building on the type IIB brane realization of the theory and in which the insertion of local chiral operators in the path integral is obtained from integrating out light modes in appropriate brane setups. Most of our analysis focuses on abelian quiver theories which can be realized as the low-energy theory of D3-D5-NS5 brane arrays. Their space of vacua contains a Higgs branch, parametrized by the vevs of half-BPS meson operators, and a Coulomb branch, parametrized by the vevs of half-BPS monopole operators. We show that the Higgs operators are inserted by adding F1 strings and D3 branes, while Coulomb operators are inserted by adding D1 strings and D3 branes, with specific orientations, to the initial brane setup of the theory. This approach has two main advantages. First the ring relations describing the Higgs and Coulomb branches can be derived by looking at specific brane setups with multiple interpretations in terms of operator insertions. This provides a new derivation of the Coulomb branch quantum relations. Secondly the map between the Higgs and Coulomb operators of mirror dual theories can be derived in a trivial way from IIB S-duality.

Cite

CITATION STYLE

APA

Assel, B. (2017). Ring relations and mirror map from branes. Journal of High Energy Physics, 2017(3). https://doi.org/10.1007/JHEP03(2017)152

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free