A novel microbial approach to the production of enantiomerically enriched and pure aroma compounds based on kinetic resolution via solid-state fermentation is proposed. Twenty-five filamentous fungi were screened for lipase activity and enantioselective hydrolysis of a volatile racemic ester (1-phenylethyl acetate (1)) and several racemic lactones (trans and cis whisky lactones (4, 5), γ-decalactone (7), δ-decalactone (8), (cis-3a,4,7,7a-tetrahydro-1(3H)-isobenzofuranone) (9)). Solid-state fermentation was conducted with linseed and rapeseed cakes. Kinetic resolution afforded enantiomerically enriched products with high enantiomeric excesses (ee = 82–99%). The results highlight the potential economic value of solid-state fermentation using agroindustrial side-stream feedstocks as an alternative to more expensive processes conducted in submerged fermentation.
CITATION STYLE
Boratyński, F., Szczepańska, E., Grudniewska, A., & Olejniczak, T. (2018). Microbial kinetic resolution of aroma compounds using solid-state fermentation. Catalysts, 8(1). https://doi.org/10.3390/catal8010028
Mendeley helps you to discover research relevant for your work.