A synthetic cyclitol-nucleoside conjugate polyphosphate is a highly potent second messenger mimic

12Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

Abstract

Reactions that form sec-sec ethers are well known, but few lead to compounds with dense functionality around the O-linkage. Replacement of the α-glucopyranosyl unit of adenophostin A, a potent d-myo-inositol 1,4,5-trisphosphate (IP3R) agonist, with a d-chiro-inositol surrogate acting substantially as a pseudosugar, leads to "d-chiro-inositol adenophostin". At its core, this cyclitol-nucleoside trisphosphate comprises an ether linkage between the axial 1-hydroxyl position of d-chiro-inositol and the 3′-hydroxyl group of an adenosine ribose sugar. A divergent synthesis of d-chiro-inositol adenophostin has been achieved. Key features of the synthetic strategy to produce a triol for phosphorylation include a new selective mono-tosylation of racemic 1,2:4,5-di-O-isopropylidene-myo-inositol using tosyl imidazole; subsequent conversion of the product into separable camphanate ester derivatives, one leading to a chiral myo-inositol triflate used as a synthetic building block and the other to l-1-O-methyl-myo-inositol [l-(+)-bornesitol] to assign the absolute configuration; the nucleophilic coupling of an alkoxide of a ribose pent-4-ene orthoester unit with a structurally rigid chiral myo-inositol triflate derivative, representing the first sec-sec ether formation between a cyclitol and ribose. Reaction of the coupled product with a silylated nucleobase completes the assembly of the core structure. Further protecting group manipulation, mixed O- and N-phosphorylation, and subsequent removal of all protecting groups in a single step achieves the final product, avoiding a separate N6 protection/deprotection strategy. d-chiro-Inositol adenophostin evoked Ca2+ release through IP3Rs at lower concentrations than adenophostin A, hitherto the most potent known agonist of IP3Rs.

Cite

CITATION STYLE

APA

Dohle, W., Su, X., Mills, S. J., Rossi, A. M., Taylor, C. W., & Potter, B. V. L. (2019). A synthetic cyclitol-nucleoside conjugate polyphosphate is a highly potent second messenger mimic. Chemical Science, 10(20), 5382–5390. https://doi.org/10.1039/c9sc00445a

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free