High-Dimensional Bayesian Optimization via Tree-Structured Additive Models

7Citations
Citations of this article
28Readers
Mendeley users who have this article in their library.

Abstract

Bayesian Optimization (BO) has shown significant success in tackling expensive low-dimensional black-box optimization problems. Many optimization problems of interest are high-dimensional, and scaling BO to such settings remains an important challenge. In this paper, we consider generalized additive models in which low-dimensional functions with overlapping subsets of variables are composed to model a high-dimensional target function. Our goal is to lower the computational resources required and facilitate faster model learning by reducing the model complexity while retaining the sample-efficiency of existing methods. Specifically, we constrain the underlying dependency graphs to tree structures in order to facilitate both the structure learning and optimization of the acquisition function. For the former, we propose a hybrid graph learning algorithm based on Gibbs sampling and mutation. In addition, we propose a novel zooming-based algorithm that permits generalized additive models to be employed more efficiently in the case of continuous domains. We demonstrate and discuss the efficacy of our approach via a range of experiments on synthetic functions and real-world datasets.

Cite

CITATION STYLE

APA

Han, E., Arora, I., & Scarlett, J. (2021). High-Dimensional Bayesian Optimization via Tree-Structured Additive Models. In 35th AAAI Conference on Artificial Intelligence, AAAI 2021 (Vol. 9A, pp. 7630–7638). Association for the Advancement of Artificial Intelligence. https://doi.org/10.1609/aaai.v35i9.16933

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free