The dimensional variables of trees play an important role in biomechanical studies that seek to estimate the risk of falls, since they influence their biomechanical behavior in relation to the forces to which they are subjected, and therefore, their safety factor. The aim of this research is to evaluate the effect of dimensional variables of trees on their mechanical behavior. A finite-element model was used to perform linear static analysis. The wood from the tree was considered clean, and the architectural model was based on dimensional variables of species commonly used in urban afforestation in São Paulo, Brazil. Different slenderness, tapering, height, and load level were used to analyze the tree mechanical behavior. The numerical-simulation model facilitates the evaluation of the influence of dimensional parameters of trees on deflections and stresses. The behavior of the deflections varies according to height, diameter, and loading level. Since the model considers the geometric variations of the section, the stresses show smooth variations along the trunk. The maximum module values of positive and negative stresses are not equal, and can undergo sudden variations in position along the trunk when local maximum stresses become global maximums.
CITATION STYLE
Ruy, M., Gonçalves, R., & Vicente, W. (2022). Effect of Dimensional Variables on the Behavior of Trees for Biomechanical Studies. Applied Sciences (Switzerland), 12(8). https://doi.org/10.3390/app12083815
Mendeley helps you to discover research relevant for your work.