Crystal structures of a Populus tomentosa 4-coumarate:CoA ligase shed light on its enzymatic mechanisms

106Citations
Citations of this article
103Readers
Mendeley users who have this article in their library.
Get full text

Abstract

4-Coumaric acid:CoA ligase (4CL) is the central enzyme of the plant-specific phenylpropanoid pathway. It catalyzes the synthesis of hydroxycinnamate-CoA thioesters, the precursors of lignin and other important phenylpropanoids, in two-step reactions involving the formation of hydroxycinnamate-AMP anhydride and then the nucleophilic substitution of AMP by CoA. In this study, we determined the crystal structures of Populus tomentosa 4CL1 in the unmodified (apo) form and in forms complexed with AMP and adenosine 59-(3-(4-hydroxyphenyl)propyl)phosphate (APP), an intermediate analog, at 2.4, ° 2.5, and 1.9 Å resolution, respectively. 4CL1 consists of two globular domains connected by a flexible linker region. The larger N-domain contains a substrate binding pocket, while the C-domain contains catalytic residues. Upon binding of APP, the C-domain rotates 18° relative to the N-domain. The crystal structure of 4CL1-APP reveals its substrate binding pocket. We identified residues essential for catalytic activities (Lys-438, Gln-443, and Lys-523) and substrate binding (Tyr-236, Gly-306, Gly-331, Pro-337, and Val-338) based on their crystal structures and by means of mutagenesis and enzymatic activity studies. We also demonstrated that the size of the binding pocket is the most important factor in determining the substrate specificities of 4CL1. These findings shed light on the enzymatic mechanisms of 4CLs and provide a solid foundation for the bioengineering of these enzymes. © 2010 American Society of Plant Biologists.

Cite

CITATION STYLE

APA

Hu, Y., Wang, D. C., Gai, Y., Yin, L., Wang, X., Feng, C., … Jiang, X. N. (2010). Crystal structures of a Populus tomentosa 4-coumarate:CoA ligase shed light on its enzymatic mechanisms. Plant Cell, 22(9), 3093–3104. https://doi.org/10.1105/tpc.109.072652

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free