Using a sample of 100 H I-selected damped Lyα (DLA) systems, observed with the High Resolution Echelle Spectrometer on the Keck I telescope, we present evidence that the scatter in the well-studied correlation between the redshift and metallicity of a DLA is largely due to the existence of a mass-metallicity relationship at each redshift. To describe the fundamental relations that exist between redshift, metallicity, and mass, we use a fundamental plane description, which is described by the following equation: [M/H] = (- 1.9 ± 0.5) + (0.74 ± 0.21)·log Δv 90-(0.32 ± 0.06)·z. Here, we assert that the velocity width, Δv 90, which is defined as the velocity interval containing 90% of the integrated optical depth, traces the mass of the underlying dark matter halo. This description provides two significant improvements over the individual descriptions of the mass-metallicity correlation and metallicity-redshift correlation. Firstly, the fundamental equation reduces the scatter around both relationships by about 20%, providing a more stringent constraint on numerical simulations modeling DLAs. Secondly, it confirms that the dark matter halos that host DLAs satisfy a mass-metallicity relationship at each redshift between redshifts 2 through 5. © 2013. The American Astronomical Society. All rights reserved.
CITATION STYLE
Neeleman, M., Wolfe, A. M., Prochaska, J. X., & Rafelski, M. (2013). The fundamental plane of damped lyα systems. Astrophysical Journal, 769(1). https://doi.org/10.1088/0004-637X/769/1/54
Mendeley helps you to discover research relevant for your work.