Global soil moisture data fusion by Triple Collocation Analysis from 2011 to 2018

9Citations
Citations of this article
22Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Surface Soil Moisture (SSM) information is needed for agricultural water resource management, hydrology and climate analysis applications. Temporal and spatial sampling by the space-borne instruments designed to retrieve SSM is, however, limited by the orbit and sensors of the satellites. We produced a Global Daily-scale Soil Moisture Fusion Dataset (GDSMFD) with 25 km spatial resolution (2011~2018) by applying the Triple Collocation Analysis (TCA) and Linear Weight Fusion (LWF) methods. Using five metrics, the GDSMFD was evaluated against in-situ soil moisture measurements from ten ground observation networks and compared with the prefusion SSM products. Results indicated that the GDSMFD was consistent with in-situ soil moisture measurements, the minimum of root mean square error values of GDSMFD was only 0.036 cm3/cm3. Moreover, the GDSMFD had a good global coverage with mean Global Coverage Fraction (GCF) of 0.672 and the maximum GCF of 0.837. GDSMFD performed well in accuracy and global coverage fraction, making it valuable in applications to the global climate change monitoring, drought monitoring and hydrological monitoring.

Cite

CITATION STYLE

APA

Xie, Q., Jia, L., Menenti, M., & Hu, G. (2022). Global soil moisture data fusion by Triple Collocation Analysis from 2011 to 2018. Scientific Data, 9(1). https://doi.org/10.1038/s41597-022-01772-x

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free