Biosynthesis of silver nanoparticles from Aloe vera leaf extract and antifungal activity against Rhizopus sp. and Aspergillus sp.

214Citations
Citations of this article
362Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Silver nanoparticles are receiving increasing attention in the field of agriculture. This study aims at evaluating the antifungal properties of green synthesised silver nanoparticles (AgNPs) from Aloe vera leaf extract against two pathogenic fungus Rhizopus sp. and Aspergillus sp. Results revealed that synthesised nanoparticles showed strong absorption maximum at 400 nm corresponding to the surface plasmon resonance. The prepared nanoparticles were characterized by SEM, FT-IR and UV–Vis spectroscopy. From the scanning photograph it is clear that particles are heterogeneous in shape such as rectangular, triangular and spherical with uniform distribution. FT-IR study showed sharp absorption peaks at 1,631 and 3,433 cm−1 for amide and alcoholic hydroxide groups, respectively. On the other hand, synthesised silver nanoparticles showed highest antifungal activity against Aspergillus sp. than Rhizopus sp. by application of 100 μL of 1 M silver nanoparticles with maximum inhibition of the growth of fungal hyphae. However, microscopic observation revealed that synthesised nanoparticles caused detrimental effects on conidial germination along with other deformations such as structure of cell membrane and inhibited normal budding process of both the tested species. Therefore, it has been concluded that Aloe vera leaf extract origin silver nanoparticles have tremendous potentiality towards controlling pathogenic fungus. However, further research is needed to check the efficacy of size-dependent AgNPs on different species of fungus.

Cite

CITATION STYLE

APA

Medda, S., Hajra, A., Dey, U., Bose, P., & Mondal, N. K. (2015). Biosynthesis of silver nanoparticles from Aloe vera leaf extract and antifungal activity against Rhizopus sp. and Aspergillus sp. Applied Nanoscience (Switzerland), 5(7), 875–880. https://doi.org/10.1007/s13204-014-0387-1

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free