Provably secure password authenticated key exchange based on RLWE for the post-quantum world

81Citations
Citations of this article
40Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Authenticated Key Exchange (AKE) is a cryptographic scheme with the aim to establish a high-entropy and secret session key over a insecure communications network. Password-Authenticated Key Exchange (PAKE) assumes that the parties in play share a simple password, which is cheap and human-memorable and is used to achieve the authentication. PAKEs are practically relevant as these features are extremely appealing in an age where most people access sensitive personal data remotely from more-and-more pervasive hand-held devices. Theoretically, PAKEs allow the secure computation and authentication of a high-entropy piece of data using a low-entropy string as a starting point. In this paper, we apply the recently proposed technique introduced in [19] to construct two lattice-based PAKE protocols enjoying a very simple and elegant design that is an parallel extension of the class of Random Oracle Model (ROM)-based protocols PAK and PPK [13,41], but in the lattice-based setting. The new protocol resembling PAK is three-pass, and provides mutual explicit authentication, while the protocol following the structure of PPK is two-pass, and provides implicit authentication. Our protocols rely on the Ring-Learning-with-Errors (RLWE) assumption, and exploit the additive structure of the underlying ring. They have a comparable level of efficiency to PAK and PPK, which makes them highly attractive. We present a preliminary implementation of our protocols to demonstrate that they are both efficient and practical. We believe they are suitable quantum safe replacements for PAK and PPK.

Cite

CITATION STYLE

APA

Ding, J., Alsayigh, S., Lancrenon, J., Rv, S., & Snook, M. (2017). Provably secure password authenticated key exchange based on RLWE for the post-quantum world. In Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 10159, pp. 183–204). Springer Verlag. https://doi.org/10.1007/978-3-319-52153-4_11

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free