Signatures of Magnetic Flux Ropes in the Low Solar Atmosphere Observed in High Resolution

14Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

Magnetic flux ropes (MFRs) are important physical features closely related to solar eruptive activities with potential space weather consequences. Studying MFRs in the low solar atmosphere can shed light on their origin and subsequent magnetic structural evolution. In recent years, observations of solar photosphere and chromosphere reached a spatial resolution of 0.1 to 0.2 arcsec with the operation of meter class ground-based telescopes, such as the 1.6 m Goode Solar Telescope at Big Bear Solar Observatory and the 1 m New Vacuum Solar Telescope at Yunnan Observatory. The obtained chromospheric Hα filtergrams with the highest resolution thus far have revealed detailed properties of MFRs before and during eruptions, and the observed pre-eruption structures of MFRs are well consistent with those demonstrated by non-linear force-free field extrapolations. There is also evidence that MFRs may exist in the photosphere. The magnetic channel structure, with multiple polarity inversions and only discernible in high-resolution magnetograph observations, may be a signature of photospheric MFRs. These MFRs are likely formed below the surface due to motions in the convection zone and appear in the photosphere through flux emergence. Triggering of some solar eruptions is associated with an enhancing twist in the low-atmospheric MFRs.

Cite

CITATION STYLE

APA

Wang, H., & Liu, C. (2019, April 4). Signatures of Magnetic Flux Ropes in the Low Solar Atmosphere Observed in High Resolution. Frontiers in Astronomy and Space Sciences. Frontiers Media S.A. https://doi.org/10.3389/fspas.2019.00018

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free