Cost-effectiveness analysis of artificial intelligence-based diabetic retinopathy screening in rural China based on the Markov model

4Citations
Citations of this article
53Readers
Mendeley users who have this article in their library.

Abstract

This study assessed the cost-effectiveness of different diabetic retinopathy (DR) screening strategies in rural regions in China by using a Markov model to make health economic evaluations. In this study, we determined the structure of a Markov model according to the research objectives, which required parameters collected through field investigation and literature retrieval. After perfecting the model with parameters and assumptions, we developed a Markov decision analytic model according to the natural history of DR in TreeAge Pro 2011. For this model, we performed Markov cohort and cost-effectiveness analyses to simulate the probabilistic distributions of different developments in DR and the cumulative cost-effectiveness of artificial intelligence (AI)-based screening and ophthalmologist screening for DR in the rural population with diabetes mellitus (DM) in China. Additionally, a model-based health economic evaluation was performed by using quality-adjusted life years (QALYs) and incremental cost-effectiveness ratios. Last, one-way and probabilistic sensitivity analyses were performed to assess the stability of the results. From the perspective of the health system, compared with no screening, AI-based screening cost more (the incremental cost was 37,257.76 RMB (approximately 5,211.31 US dollars)), but the effect was better (the incremental utility was 0.33). Compared with AI-based screening, the cost of ophthalmologist screening was higher (the incremental cost was 14,886.76 RMB (approximately 2,070.19 US dollars)), and the effect was worse (the incremental utility was -0.31). Compared with no screening, the incremental cost-effectiveness ratio (ICER) of AI-based DR screening was 112,146.99 RMB (15,595.47 US dollars)/QALY, which was less than the threshold for the ICER (< 3 times the per capita gross domestic product (GDP), 217,341.00 RMB (30,224.03 US dollars)). Therefore, AI-based screening was cost-effective, which meant that the increased cost for each additional quality-adjusted life year was merited. Compared with no screening and ophthalmologist screening for DR, AI-based screening was the most cost-effective, which not only saved costs but also improved the quality of life of diabetes patients. Popularizing AI-based DR screening strategies in rural areas would be economically effective and feasible and can provide a scientific basis for the further formulation of early screening programs for diabetic retinopathy.

Cite

CITATION STYLE

APA

Li, H., Li, G., Li, N., Liu, C., Yuan, Z., Gao, Q., … Yang, J. (2023). Cost-effectiveness analysis of artificial intelligence-based diabetic retinopathy screening in rural China based on the Markov model. PLoS ONE, 18(11 November). https://doi.org/10.1371/journal.pone.0291390

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free