The estrogen receptor (ER)α is a biologically and clinically important ligand-modulated transcription factor. The F domain of the ERα modulates its functions in a ligand-, promoter-, and cell-specific manner. To identify the region(s) responsible for these functions, we characterized the effects of serial truncations within the F domain. We found that truncating the last 16 residues of the F domain altered the activity of the human ERα(hERα) on an estrogen response element-driven promoter in response to estradiol or 4-hydroxytamoxifen (4-OHT), its sensitivity to overexpression of the coactivator steroid receptor coactivator-1 in mammalian cells, and its interaction with a receptor-interacting domain of the coactivator steroid receptor coactivator-1 or engineered proteins ("monobodies") that specifically bind to ERα/ligand complexes in a yeast two-hybrid system. Most importantly, the ability of the ER to induce pS2 was reduced in MDA-MB-231 cells stably expressing this truncated ER vs. the wild-type ER. The region includes a distinctive segment (residues 579-584; LQKYYIT) having a high content of bulky and/or hydrophobic amino acids that was previously predicted to adopt a β-strand-like structure. As previously reported, removal of the entire F domain was necessary to eliminate the agonist activity of 4-OHT. In addition, mutation of the vicinal glycine residues between the ligand-binding domain and F domains specifically reduced the 4-OHT-dependent interactions of the hERα ligand-binding domain and F domains with monobodies. These results show that regions within the F domain of the hERα selectively modulate its activity and its interactions with other proteins. Copyright © 2007 by The Endocrine Society.
CITATION STYLE
Koide, A., Zhao, C., Naganuma, M., Abrams, J., Deighton-Collins, S., Skafar, D. F., & Koide, S. (2007). Identification of regions within the F domain of the human estrogen receptor α that are important for modulating transactivation and protein-protein interactions. Molecular Endocrinology, 21(4), 829–842. https://doi.org/10.1210/me.2006-0203
Mendeley helps you to discover research relevant for your work.