Reprogrammable shape morphing of magnetic soft machines

224Citations
Citations of this article
233Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Shape-morphing magnetic soft machines are highly desirable for diverse applications in minimally invasive medicine, wearable devices, and soft robotics. Despite recent progress, current magnetic programming approaches are inherently coupled to sequential fabrication processes, preventing reprogrammability and high-throughput programming. Here, we report a high-throughput magnetic programming strategy based on heating magnetic soft materials above the Curie temperature of the embedded ferromagnetic particles and reorienting their magnetic domains by applying magnetic fields during cooling. We demonstrate discrete, three-dimensional, and reprogrammable magnetization with high spatial resolution (~38 μm). Using the reprogrammable magnetization capability, reconfigurable mechanical behavior of an auxetic metamaterial structure, tunable locomotion of a surface-walking soft robot, and adaptive grasping of a soft gripper are shown. Our approach further enables high-throughput magnetic programming (up to 10 samples/min) via contact transfer. Heat-assisted magnetic programming strategy described here establishes a rich design space and mass-manufacturing capability for development of multiscale and reprogrammable soft machines.

Cite

CITATION STYLE

APA

Alapan, Y., Karacakol, A. C., Guzelhan, S. N., Isik, I., & Sitti, M. (2020). Reprogrammable shape morphing of magnetic soft machines. Science Advances, 6(38). https://doi.org/10.1126/sciadv.abc6414

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free