Emerging experience-dependent dynamics in primary somatosensory cortex reflect behavioral adaptation

6Citations
Citations of this article
49Readers
Mendeley users who have this article in their library.

Abstract

Behavioral experience and flexibility are crucial for survival in a constantly changing environment. Despite evolutionary pressures to develop adaptive behavioral strategies in a dynamically changing sensory landscape, the underlying neural correlates have not been well explored. Here, we use genetically encoded voltage imaging to measure signals in primary somatosensory cortex (S1) during sensory learning and behavioral adaptation in the mouse. In response to changing stimulus statistics, mice adopt a strategy that modifies their detection behavior in a context dependent manner as to maintain reward expectation. Surprisingly, neuronal activity in S1 shifts from simply representing stimulus properties to transducing signals necessary for adaptive behavior in an experience dependent manner. Our results suggest that neuronal signals in S1 are part of an adaptive framework that facilitates flexible behavior as individuals gain experience, which could be part of a general scheme that dynamically distributes the neural correlates of behavior during learning.

Cite

CITATION STYLE

APA

Waiblinger, C., McDonnell, M. E., Reedy, A. R., Borden, P. Y., & Stanley, G. B. (2022). Emerging experience-dependent dynamics in primary somatosensory cortex reflect behavioral adaptation. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-28193-z

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free