Background: Donor-specific cell-free DNA(dscfDNA) is increasingly being considered as a noninvasive biomarker to monitor graft health and diagnose graft rejection after solid-organ transplantation. However, current approaches used to measure dscfDNA can be costly and/or laborious. A probe-free droplet digital PCR (ddPCR) methodology using small deletion/insertion polymorphisms (DIPs) was developed to circumvent these limitations without compromising the quantification of dscfDNA. This method was called PHABRE-PCR (Primer to Hybridize across an Allelic BREakpoint-PCR). The strategic placement of one primer to hybridize across an allelic breakpoint ensured highly specific PCR amplification, which then enabled the absolute quantification of donor-specific alleles by probe-free ddPCR. Methods: dscfDNA was serially measured in 3 liver transplant recipients. Donor and recipient genomic DNA was first genotyped against a panel of DIPs to identify donor-specific alleles. Alleles that differentiated donor-specific from recipient-specific DNA were then selected to quantify dscfDNA in the recipient plasma. Results: Lack of amplification of nontargeted alleles confirmed that PHABRE-PCR was highly specific. In recipients who underwent transplantation, dscfDNA was increased at day 3, but decreased and plateaued at a low concentration by 2 weeks in the 2 recipients who did not develop any complications. In the third transplant recipient, a marked increase of dscfDNA coincided with an episode of graft rejection. Conclusions: PHABRE-PCR was able to quantify dscfDNA with high analytical specificity and sensitivity. The implementation of a DIP-based approach permits surveillance of dscfDNA as a potential measure of graft health after solid-organ transplantation.
CITATION STYLE
Goh, S. K., Muralidharan, V., Christophi, C., Do, H., & Dobrovic, A. (2017). Probe-free digital PCR quantitative methodology to measure donor-specific cell-free DNA after solid-organ transplantation. Clinical Chemistry, 63(3), 742–750. https://doi.org/10.1373/clinchem.2016.264838
Mendeley helps you to discover research relevant for your work.