Decreasing the environmental impact of carbon fibre production via microwave carbonisation enabled by self-assembled nanostructured coatings

2Citations
Citations of this article
3Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The use of carbon fibre (CF)-based composites is of growing global importance due to their application in high-end sectors such as aerospace, automotive, construction, sports and leisure amongst others. However, their current high production cost, high carbon footprint and reduced production capability limit their use to high-performance and luxury applications. Approximately 50% of the total cost of CF production is due to the thermal conversion of polyacrylonitrile (PAN) precursor fibre (PF) to CF as it involves the use of high energy consumption and low heating efficiency in large furnaces. Looking at this scenario, this study proposes in the present study to use microwave (MW) heating to convert PF to CF. This is scientifically and technologically challenging since PF does not absorb microwave energy. While MW plasma has been utilised to carbonise fibres, it is the high temperature from the plasma that does the carbonisation and not the MW absorption of the fibres. Therefore, for the first time, this research shows how carbonisation temperatures of >1000 °C can be reached in a matter of seconds through the use of a novel microwave (MW) susceptor nanocoating methodology developed via a layer-by-layer assembly of multiwall carbon nanotubes (MWCNTs) on the PF surface. Remarkably, these CFs can be produced in an inexpensive domestic microwave and exhibit mechanical performance equivalent to CF produced using conventional heating. Additionally, this study provides a life cycle and environmental impact analysis which shows that MW heating reduces the energy demand and environmental impact of lignin-based CF production by up to 66.8% and 69.5%, respectively. Graphical Abstract: (Figure presented.)

Cite

CITATION STYLE

APA

Stróżyk, M. A., Muddasar, M., Conroy, T. J., Hermansson, F., Janssen, M., Svanström, M., … Collins, M. N. (2024). Decreasing the environmental impact of carbon fibre production via microwave carbonisation enabled by self-assembled nanostructured coatings. Advanced Composites and Hybrid Materials, 7(2). https://doi.org/10.1007/s42114-024-00853-2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free