Los métodos de deep learning pueden ser aplicados para generar modelos de pronóstico. Nosotros trabajamos con el producto bruto interno (PBI) de seis países de América Latina: Argentina, Brasil, Chile, Colombia, México y Perú empleando indicadores macroeconómicos anuales y trimestrales, del Banco Mundial y la Comisión Económica para América Latina y el Caribe (CEPAL), respectivamente. Para el preprocesamiento de los datos, a las series trimestrales se agregaron como características adicionales la descomposición de estas en tendencia, estacionalidad y residuo, con la finalidad de aportar más información a los modelos. Además, se reemplazaron datos atípicos producto del impacto de la pandemia del COVID-19 en la economía mundial. Se construyeron modelos de Perceptrón Multi Capa, Red Neuronal Convolucional, LSTM, GRU y SeqToSeq para cada país y frecuencia de sus series, y luego se evaluaron mediante validación cruzada continua y métricas MAE, RMSE y MAPE. Los modelos óptimos varían por cada caso.
CITATION STYLE
Alegre Ibáñez, V. A., & Lozano Aparicio, J. M. (2022). Aplicación de métodos de Deep Learning en series de tiempo para el pronóstico de la situación macroeconómica en América Latina. Interfases, (015), 102–130. https://doi.org/10.26439/interfases2022.n015.5817
Mendeley helps you to discover research relevant for your work.