Hot cracking during laser welding of advanced high-strength steels is reported to be a serious problem by automotive manufacturers. In this work, hot cracking susceptibilities of transformation-induced plasticity (TRIP) and dual-phase (DP) steels are studied based on a multi-scale modelling approach. Transient temperatures measured from welding experiments are used to validate a finite element (FE) model. The temperature, thermal gradient and cooling rate in the weld fusion zone are extracted from the FE model and pre-defined as boundary conditions to a phase field model. The welding-induced microstructural evolution is simulated considering thermodynamic and mobility data. Results show that, compared to the DP steel, the TRIP steel has a broader solidification range, a greater pressure drop at the inter-dendritic regions, and an increased phosphorus segregation at the grain boundaries; all these make this steel more susceptible for hot cracking.
CITATION STYLE
Gao, H., Agarwal, G., Amirthalingam, M., & Hermans, M. J. M. (2018). Hot cracking investigation during laser welding of high-strength steels with multi-scale modelling approach. Science and Technology of Welding and Joining, 23(4), 287–294. https://doi.org/10.1080/13621718.2017.1384884
Mendeley helps you to discover research relevant for your work.