An ESD and Interference-Robust Protection Circuit for Cascode Low-Noise Amplifier in CMOS-SOI Technology

3Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In this paper, we propose a double diode network including an additional stacked diode, which provides robustness against Electrostatic discharge (ESD) and high-frequency interference signals. The proposed stacked diode in the conventional double diode network protects the integrated circuit from instantaneous voltage events by providing an additional current path to the double diode network. Also, it can structurally minimize the parasitic capacitance generated in the diode. The general operating principle and limitation of the conventional double diode network for ESD events and high-frequency interference signals were analyzed and simulated. For experimental verification, a cascode LNA with inductive source degeneration was designed in a 130nm CMOS Silicon-on-insulator (SOI) process for the time-division long-term evolution (TD-LTE) application at the coexistence band. The LNA with the proposed double diode network provides a noise figure of 1.08 dB and a small-signal gain of 18.7 dB at 2.65 GHz (Band 41). And it was measured to be able to protect the internal circuit at 2000 V HBM event, and the RF performances were not affected even with a high-frequency interference signal close to 30 dBm.

Cite

CITATION STYLE

APA

Kim, M. S., & Jhon, H. (2021). An ESD and Interference-Robust Protection Circuit for Cascode Low-Noise Amplifier in CMOS-SOI Technology. IEEE Access, 9, 75293–75301. https://doi.org/10.1109/ACCESS.2021.3081169

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free