Protonation of the molecularly rigid polymer of intrinsic microporosity PIM-EA-TB can be coupled to immobilisation of Fe(CN)63−/4− (as well as immobilisation of Prussian blue) into 1–2 nm diameter channels. The resulting films provide redox-active coatings on glassy carbon electrodes. Uptake, transport, and retention of Fe(CN)63−/4− in the microporous polymer are strongly pH dependent requiring protonation of the PIM-EA-TB (pKA ≈ 4). Both Fe(CN)64− and Fe(CN)63− can be immobilised, but Fe(CN)64− appears to bind tighter to the polymer backbone presumably via bridging protons. Loss of Fe(CN)63−/4− by leaching into the aqueous solution phase becomes significant only at pH > 9 and is likely to be associated with hydroxide anions directly entering the microporous structure to combine with protons. This and the interaction of Fe(CN)63−/4− and protons within the molecularly rigid PIM-EA-TB host are suggested to be responsible for retention and relatively slow leaching processes. Electrocatalysis with immobilised Fe(CN)63−/4− is demonstrated for the oxidation of ascorbic acid. [Figure not available: see fulltext.]
CITATION STYLE
Wang, L., Malpass-Evans, R., Carta, M., McKeown, N. B., & Marken, F. (2020). The immobilisation and reactivity of Fe(CN)63−/4− in an intrinsically microporous polyamine (PIM-EA-TB). Journal of Solid State Electrochemistry, 24(11–12), 2797–2806. https://doi.org/10.1007/s10008-020-04603-4
Mendeley helps you to discover research relevant for your work.