A hydrogen processing strategy is developed to enable bulk LaNi5 to attain high activity and long-term stability toward the electrocatalytic oxygen evolution reaction (OER). By a combination of in situ Raman and quasi in situ X-ray absorption (XAS) spectra, secondary-electron-excited scanning transmission electron microscopy (STEM) patterns as well as the Rietveld method and density functional theory (DFT) calculations, it is discovered that hydrogen-induced lattice distortion, grain refinement, and particle cracks dictate the effective reconstruction of the LaNi5 surface into a porous hetero-nanoarchitecture composed of uniformly confined active γ-NiOOH nanocrystals by La(OH)3 layer in the alkaline OER process. This significantly optimizes the charge transfer, structural integrity, active-site exposure, and adsorption energy toward the reaction intermediates. Benefiting from these merits, the overpotential (322 mV) at 100 mA cm−2 for the hydrogen-processed OER catalyst deposited on nickel foam is reduced by 104 mV as compared to the original phase. Notably, it exhibits remarkable stability for 10 days at an industrial-grade current density of more than 560 mA cm−2 in alkaline media.
CITATION STYLE
Chen, Z., Yang, H., Mebs, S., Dau, H., Driess, M., Wang, Z., … Menezes, P. W. (2023). Reviving Oxygen Evolution Electrocatalysis of Bulk La–Ni Intermetallics via Gaseous Hydrogen Engineering. Advanced Materials, 35(11). https://doi.org/10.1002/adma.202208337
Mendeley helps you to discover research relevant for your work.