Human erythrocytes, by virtue of their ability to release ATP in response to physiological stimuli, have been proposed to participate in the regulation of local blood flow. A signal transduction pathway that relates these stimuli to ATP release has been described and includes the heterotrimeric G protein G i and adenylyl cyclase (AC). In this cell, Gi activation results in increases in cAMP and, ultimately, ATP release. It has been reported that Gi expression is decreased in animal models of diabetes and in platelets of humans with type 2 diabetes. Here, we report that Gi2 expression is selectively decreased in erythrocytes of humans with type 2 diabetes and that this defect is associated with reductions in cAMP accumulation and ATP release in response to incubation of erythrocytes with mastoparan 7 (10 μmol/l), an activator of Gi. Importantly, this defect in ATP release correlates inversely with the adequacy of glycemic control as determined by levels of HbA1c (A1C). These results demonstrate that in erythrocytes of humans with type 2 diabetes, both Gi expression and ATP release in response to mastoparan 7 are impaired, which is consistent with the hypothesis that this defect in erythrocyte physiology could contribute to the vascular disease associated with this clinical condition. © 2006 by the American Diabetes Association.
CITATION STYLE
Sprague, R. S., Stephenson, A. H., Bowles, E. A., Stumpf, M. S., & Lonigro, A. J. (2006). Reduced expression of Gi in erythrocytes of humans with type 2 diabetes is associated with impairment of both cAMP generation and ATP release. Diabetes, 55(12), 3588–3593. https://doi.org/10.2337/db06-0555
Mendeley helps you to discover research relevant for your work.