Nitric oxide is involved in methyl jasmonate-induced defense responses and secondary metabolism activities of Taxus cells

135Citations
Citations of this article
83Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Methyl jasmonate (MeJA), a methyl ester of jasmonic acid (JA), is a well-established signal molecule in plant defense responses and an effective inducer of secondary metabolite accumulation in plant cell cultures such as the valuable anticancer diterpenoid taxol (paclitaxel) in Taxus spp. This work examines the involvement of nitric oxide (NO) in MeJA-induced plant defense responses and secondary metabolism in Taxus chinensis cell cultures. Exogenously supplied MeJA at 100 μM induced rapid production of NO in the Taxus cell cultures, reaching a maximum within 6 h of MeJA supply. Several other responses occurred concomitantly, including the production of hydrogen peroxide (H 2O2), and the increases in intracellular malondialdehyde (MDA) content, lipoxygenase (LOX) and phenylalanine ammonium-lyase (PAL) activities. The MeJA-induced H2O2 production was suppressed by an NO donor, sodium nitroprusside (SNP), but enhanced by NO inhibitors, Nω-nitro-L-arginine (L-NNA) and 2-phenyl-4,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide (PTIO). In contrast, the MeJA-induced MDA, LOX and PAL were all enhanced by the NO donor but suppressed by the NO inhibitors. The NO inhibitors also suppressed MeJA-induced taxol accumulation. These results are suggestive of a role for NO as a signal element for activating the MeJA-induced defense responses and secondary metabolism activities of plant cells. © 2005 JSPP.

Cite

CITATION STYLE

APA

Jian, W. W., & Wu, J. Y. (2005). Nitric oxide is involved in methyl jasmonate-induced defense responses and secondary metabolism activities of Taxus cells. Plant and Cell Physiology, 46(6), 923–930. https://doi.org/10.1093/pcp/pci098

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free