Deep-fat Frying Using Soybean Oil-based Diacylglycerol-Palm Olein Oil Blends: Thermo-oxidative Stability, 3-MCPDE and Glycidyl Ester Formation

4Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

Diacylglycerol (DAG) is commonly known as one of the precursors for the 3-monochloro-1,2-propanediol esters (3-MCPDE) and glycidyl esters (GE) formation. However, due to its health-promoting effects, its potential as alternative frying medium was examined. This study aimed to assess the frying performance of soybean oil-based diacylglycerol oil (DO) and its oil blends with palm olein (PO), in comparison with PO. Four different oil types (DO, PO, OB I (DO:PO, 1:1, w/w) and OB II (DO:PO, 1:2, w/ w)) were used to fry potato chips for five consecutive days at 180℃. The formation of oxidation compounds, acylglycerol composition, 3-MCPDE and GE changes throughout the frying study were investigated. Both OB I and OB II exhibited lower oxidation compounds’ formation rates than PO. Besides, significant (p < 0.05) reductions of 3-MCPDE and increments of GE levels were observed in all frying systems throughout the frying study. After 25 frying cycles, the 3-MCPDE levels in all frying oils were below 0.13 mg/kg, while the GE levels ranged from 1.51 mg/kg to 1.89 mg/kg. Despite the poorer oxidative stability of DO, its 3-MCPDE and GE levels were much lower compared to PO. In comparison to DO, the 3-MCPDE degradation and GE formation rates were enhanced and reduced, respectively with the blending of PO and DO. This study showed the potential of DO:PO oil blend in deep-fat frying application. With appropriate blending ratio of DO and PO, an alternative frying medium with enhanced nutritional value and oxidative stability could be developed.

Cite

CITATION STYLE

APA

Lee, Y. J., Khor, Y. P., Kadir, N. S. A., Lan, D., Wang, Y., & Tan, C. P. (2023). Deep-fat Frying Using Soybean Oil-based Diacylglycerol-Palm Olein Oil Blends: Thermo-oxidative Stability, 3-MCPDE and Glycidyl Ester Formation. Journal of Oleo Science, 72(5), 533–541. https://doi.org/10.5650/jos.ess22361

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free