This study investigated the neuronal protective effect of monosialotetrahexosylganglioside (GM1) on the hypoxia-ischemia white matter damage (WMD) in neonatal rats. Brain hypoxia-ischemia was induced by bilateral carotid artery occlusion in 4-day-old neonatal rats. Bilateral carotid artery occlusion (BCAO) was performed in rats in WMD and GM1 groups, while in sham group; the rat bilateral carotid arteries were merely exposed without occlusion. Immunohistochemical staining was used to determine the expression of myelin basic protein (MBP), glial fibrillary acidic protein (GFAP), and β-amyloid precursor protein (β-APP). In addition, suspension test, slope test, and open-field test were carried out on day 26 after BCAO to determine the neurobehavioral function. The percentage of MBP-positive cells was decreased while β-APP-and GFAP-positive cells were increased in WMD group. After treated with GM1, the percentage of MBP-positive cells increased significantly than WMD rats at post-operation 72 h and day 7. GFAP-positive cells and β-APP-positive cells decreased significantly in WMD group at post-operation 72 h, day 7 and 26. The suspension test, slope test, and open-field test showed that neurobehavioral function was improved in ganglioside GM1 group compared with WMD group. Taken together, our findings suggested that ganglioside GM1 treatment reduces hypoxia-ischemia induced impairment of the neurobehavioral function in WMD in neonatal rats. © 2013 by Polish Neuroscience Society - PTBUN, Nencki Institute of Experimental Biology.
CITATION STYLE
Rong, X., Zhou, W., Chen, X. W., Tao, L., & Tang, J. (2013). Ganglioside GM1 reduces white matter damage in neonatal rats. Acta Neurobiologiae Experimentalis, 73(3), 379–386. https://doi.org/10.55782/ane-2013-1944
Mendeley helps you to discover research relevant for your work.