Surrogate models are increasingly required for applications in which first-principles simulation models are prohibitively expensive to employ for uncertainty analysis, design, or control. They can also be used to approximate models whose discontinuous derivatives preclude the use of gradient-based optimization or data assimilation algorithms. We consider the problem of inferring the 2D location and intensity of a radiation source in an urban environment using a ray-tracing model based on Boltzmann transport theory. Whereas the code implementing this model is relatively efficient, extension to 3D Monte Carlo transport simulations precludes subsequent Bayesian inference to infer source locations, which typically requires thousands to millions of simulations. Additionally, the resulting likelihood exhibits discontinuous derivatives due to the presence of buildings. To address these issues, we discuss the construction of surrogate models for optimization, Bayesian inference, and uncertainty propagation. Specifically, we consider surrogate models based on Legendre polynomials, multivariate adaptive regression splines, radial basis functions, Gaussian processes, and neural networks. We detail strategies for computing training points and discuss the merits and deficits of each method.
CITATION STYLE
Cook, J. A., Smith, R. C., Hite, J. M., Stefanescu, R., & Mattingly, J. (2019). Application and evaluation of surrogate models for radiation source search. Algorithms, 12(2). https://doi.org/10.3390/A12120269
Mendeley helps you to discover research relevant for your work.