Wildfire smoke triggers cirrus formation: Lidar observations over the eastern Mediterranean

8Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The number of intense wildfires may increase further in upcoming years as a consequence of climate change. It is therefore necessary to improve our knowledge about the role of smoke in the climate system, with emphasis on the impact of smoke particles on the evolution of clouds, precipitation, and cloud radiative properties. Presently, one key aspect of research is whether or not wildfire smoke particles can initiate cirrus formation. In this study, we present lidar observations over Limassol, Cyprus, from 27 October to 3 November 2020, when extended wildfire smoke fields crossed the Mediterranean Basin from Portugal to Cyprus. We found strong evidence that aged smoke (organic aerosol particles) originating from wildfires in North America triggered significant ice nucleation at temperatures from -47 to -53° C and caused the formation of extended cirrus layers. The observations suggest that the ice crystals were nucleated just below the tropopause in the presence of smoke particles serving as ice-nucleating particles (INPs). The main part of the 2-3km thick smoke layer was, however, in the lower stratosphere just above the tropopause. With actual radiosonde observations of temperature and relative humidity and lidar-derived smoke particle surface area concentrations used as starting values, gravity wave simulations show that the lofting of air by 100-200m is sufficient to initiate significant ice nucleation on the smoke particles, leading to ice crystal number concentrations of 1-100L-1.

Cite

CITATION STYLE

APA

Mamouri, R. E., Ansmann, A., Ohneiser, K., Knopf, D. A., Nisantzi, A., Bühl, J., … Hadjimitsis, D. (2023). Wildfire smoke triggers cirrus formation: Lidar observations over the eastern Mediterranean. Atmospheric Chemistry and Physics, 23(22), 14097–14114. https://doi.org/10.5194/acp-23-14097-2023

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free