Quantum contextuality turns out to be a necessary resource for universal quantum computation and also has applications in quantum communication. Thus it becomes important to generate contextual sets of arbitrary structure and complexity to enable a variety of implementations. In recent years, such generation has been done for contextual sets known as Kochen-Specker sets. Up to now, two approaches have been used for massive generation of non-isomorphic Kochen-Specker sets: exhaustive generation up to a given size and downward generation from master sets and their associated coordinatizations. Master sets were obtained earlier from serendipitous or intuitive connections with polytopes or Pauli operators, and more recently from arbitrary vector components using an algorithm that generates orthogonal vector groupings from them. However, both upward and downward generation face an inherent exponential complexity barrier. In contrast, in this paper we present methods and algorithms that we apply to downward generation that can overcome the exponential barrier in many cases of interest. These involve tailoring and manipulating Kochen-Specker master sets obtained from a small number of simple vector components, filtered by the features of the sets we aim to obtain. Some of the classes of Kochen-Specker sets we generate contain all previously known ones, and others are completely novel. We provide examples of both kinds in 4- and 6-dim Hilbert spaces. We also give a brief introduction for a wider audience and a novice reader.
CITATION STYLE
Pavičić, M., Waegell, M., Megill, N. D., & Aravind, P. K. (2019). Automated generation of Kochen-Specker sets. Scientific Reports, 9(1). https://doi.org/10.1038/s41598-019-43009-9
Mendeley helps you to discover research relevant for your work.