In Vivo Evaluation of Praziquantel-Loaded Solid Lipid Nanoparticles against S. mansoni Infection in Preclinical Murine Models

6Citations
Citations of this article
31Readers
Mendeley users who have this article in their library.

Abstract

This study aimed to develop and assess the long-term stability of drug-loaded solid lipid nanoparticles (SLNs). The SLNs were designed to extend the release profile, overcome the problems of bioavailability and solubility, investigate toxicity, and improve the antischistosomal efficacy of praziquantel. The aim was pursued using solvent injection co-homogenization techniques to fabricate SLNs in which Compritol ATO 888 and lecithin were used as lipids, and Pluronic F127 (PF127) was used as a stabilizer. The long-term stability effect of the PF127 as a stabilizer on the SLNs was evaluated. Dynamic light scattering (DLS) was used to determine the particle size, stability, and polydispersity. The morphology of the SLNs was examined through the use of transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The chemical properties, as well as the mechanical, thermal, and crystal behaviours of SLNs were evaluated using FTIR, ElastoSens Bio2, XRPD, DSC, and TGA, respectively. SLNs with PF127 depicted an encapsulation efficiency of 71.63% and a drug loading capacity of 11.46%. The in vitro drug release study for SLNs with PF127 showed a cumulative release of 48.08% for the PZQ within 24 h, with a similar release profile for SLNs’ suspension after 120 days. DLS, ELS, and optical characterization and stability profiling data indicate that the addition of PF127 as the surfactants provided long-term stability for SLNs. In vitro cell viability and in vivo toxicity evaluation signify the safety of SLNs stabilized with PF127. In conclusion, the parasitological data showed that in S. mansoni-infected mice, a single (250 mg/kg) oral dosage of CLPF-SLNs greatly improved PZQ antischistosomal efficacy both two and four weeks post-infection. Thus, the fabricated CLPF-SLNs demonstrated significant efficiency inthe delivery of PZQ, and hence are a promising therapeutic strategy against schistosomiasis.

Cite

CITATION STYLE

APA

Adekiya, T. A., Kumar, P., Kondiah, P. P. D., Ubanako, P., & Choonara, Y. E. (2022). In Vivo Evaluation of Praziquantel-Loaded Solid Lipid Nanoparticles against S. mansoni Infection in Preclinical Murine Models. International Journal of Molecular Sciences, 23(16). https://doi.org/10.3390/ijms23169485

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free