Landslide Susceptibility Assessment by Using Convolutional Neural Network

119Citations
Citations of this article
53Readers
Mendeley users who have this article in their library.

Abstract

This study performs a GIS-based landslide susceptibility assessment using a convolutional neural network, CNN, in a study area of the Gorzineh-khil region, northeastern Iran. For this assessment, a 15-layered CNN was programmed in the Python high-level language for susceptibility mapping. In this regard, as far as the landside triggering factors are concerned, it was concluded that the geomorphologic/topographic parameters (i.e., slope curvature, topographical elevation, slope aspect, and weathering) and water condition parameters (hydrological gradient, drainage pattern, and flow gradient) are the main triggering factors. These factors provided the landside dataset, which was input to the CNN. We used 80% of the dataset for training and the remaining 20% for testing to prepare the landslide susceptibility map of the study area. In order to cross-validate the resulting map, a loss function, and common classifiers were considered: support vector machines, SVM, k-nearest neighbor, k-NN, and decision tree, DT. An evaluation of the results of the susceptibility assessment revealed that the CNN led the other classes in terms of 79.0% accuracy, 73.0% precision, 75.0% recall, and 77.0% f1-score, and, hence, provided better accuracy and the least computational error when compared to the other models.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Cite

CITATION STYLE

APA

Nikoobakht, S., Azarafza, M., Akgün, H., & Derakhshani, R. (2022). Landslide Susceptibility Assessment by Using Convolutional Neural Network. Applied Sciences (Switzerland), 12(12). https://doi.org/10.3390/app12125992

Readers' Seniority

Tooltip

PhD / Post grad / Masters / Doc 7

54%

Researcher 4

31%

Professor / Associate Prof. 1

8%

Lecturer / Post doc 1

8%

Readers' Discipline

Tooltip

Earth and Planetary Sciences 5

33%

Environmental Science 5

33%

Computer Science 4

27%

Engineering 1

7%

Article Metrics

Tooltip
Mentions
Blog Mentions: 1

Save time finding and organizing research with Mendeley

Sign up for free