Flash floods and extreme rains are destructive phenomena and difficult to forecast. In 2011, the mountainous region of Rio de Janeiro state suffered one of the largest natural hazards in Brazil, affecting more than 300,000 people, leaving more than 900 dead. This article simulates this natural hazard through Quantitative Precipitation Forecasting (QPF) and streamflow forecast ensemble, using 18 combinations of parameterizations between cumulus, microphysics, surface layer, planetary boundary layer, land surface and lateral contour conditions of the Weather Research and Forecasting (WRF) Model, coupling to the Soil Moisture Accounting Procedure (SMAP) hydrological model, seeking to find the best set of parametrizations for the forecasting of extreme events in the region. The results showed rainfall and streamflow forecast were underestimated by the models, reaching an error of 57.4% to QPF and 24.6% error to streamflow, and part of these errors are related to the lack of skill of the atmospheric model in predicting the intensity and the spatial-temporal distribution of rainfall. These results bring to light the limitations of numerical weather prediction, possibly due to the lack of initiatives involving the adaptation of empirical constants, intrinsic in the parametrization models, to the specific atmospheric conditions of each region of the country.
CITATION STYLE
Barcellos, P. da C. L., & Cataldi, M. (2020). Flash flood and extreme rainfall forecast through one-way coupling of WRF-SMAP models: Natural hazards in Rio de Janeiro State. Atmosphere, 11(8). https://doi.org/10.3390/ATMOS11080834
Mendeley helps you to discover research relevant for your work.