Background: Recent advances in tissue regeneration approaches including 3D organoids, were based on various 3D organogenesis models. However, 3D models are generally technique-sensitive and time-consuming. Thus, we utilized an existing model of submandibular salivary gland (SMG) to modify a simple and highly reproducible in vitro 3D culture model of primary SMG cells self-organization into a well-developed cell spheroid inside Matrigel substrate. We used this model to observe the collective multicellular behavior during spheroid formation. Further, we applied various quantitative approaches including real-time live imaging and immune histochemical image analysis to dissect the cellular dynamics during tissue patterning. Results: On a time-scale of hours, we observed marked size and shape transformations in the developed 3D spheroid which resulted in a spatially-controlled growth differential from the canter to the periphery of the formed aggregates. Moreover, we investigated the effect of fibronectin (FN) on SMG cells self-organization using our simplified culture model. Interestingly, we discovered a novel role of FN in inducing duct-like elongation during initial stages of SMG bud formation. Conclusion: This in vitro model provides an excellent tool for analyzing the intercellular dynamics during early SMG tissue development as well as revealing a novel role of FN in SMG ductal expansion.
CITATION STYLE
Farahat, M., Kazi, G. A. S., Taketa, H., Hara, E. S., Oshima, M., Kuboki, T., & Matsumoto, T. (2019). Fibronectin-induced ductal formation in salivary gland self-organization model. Developmental Dynamics, 248(9), 813–825. https://doi.org/10.1002/dvdy.78
Mendeley helps you to discover research relevant for your work.