Deciphering the omicron variant: integrated omics analysis reveals critical biomarkers and pathophysiological pathways

1Citations
Citations of this article
7Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: The rapid emergence and global dissemination of the Omicron variant of SARS-CoV-2 have posed formidable challenges in public health. This scenario underscores the urgent need for an enhanced understanding of Omicron's pathophysiological mechanisms to guide clinical management and shape public health strategies. Our study is aimed at deciphering the intricate molecular mechanisms underlying Omicron infections, particularly focusing on the identification of specific biomarkers. Methods: This investigation employed a robust and systematic approach, initially encompassing 15 Omicron-infected patients and an equal number of healthy controls, followed by a validation cohort of 20 individuals per group. The study's methodological framework included a comprehensive multi-omics analysis that integrated proteomics and metabolomics, augmented by extensive bioinformatics. Proteomic exploration was conducted via an advanced Ultra-High-Performance Liquid Chromatography (UHPLC) system linked with mass spectrometry. Concurrently, metabolomic profiling was executed using an Ultra-Performance Liquid Chromatography (UPLC) system. The bioinformatics component, fundamental to this research, entailed an exhaustive analysis of protein–protein interactions, pathway enrichment, and metabolic network dynamics, utilizing state-of-the-art tools such as the STRING database and Cytoscape software, ensuring a holistic interpretation of the data. Results: Our proteomic inquiry identified eight notably dysregulated proteins (THBS1, ACTN1, ACTC1, POTEF, ACTB, TPM4, VCL, ICAM1) in individuals infected with the Omicron variant. These proteins play critical roles in essential physiological processes, especially within the coagulation cascade and hemostatic mechanisms, suggesting their significant involvement in the pathogenesis of Omicron infection. Complementing these proteomic insights, metabolomic analysis discerned 146 differentially expressed metabolites, intricately associated with pivotal metabolic pathways such as tryptophan metabolism, retinol metabolism, and steroid hormone biosynthesis. This comprehensive metabolic profiling sheds light on the systemic implications of Omicron infection, underscoring profound alterations in metabolic equilibrium. Conclusions: This study substantially enriches our comprehension of the physiological ramifications induced by the Omicron variant, with a particular emphasis on the pivotal roles of coagulation and platelet pathways in disease pathogenesis. The discovery of these specific biomarkers illuminates their potential as critical targets for diagnostic and therapeutic strategies, providing invaluable insights for the development of tailored treatments and enhancing patient care in the dynamic context of the ongoing pandemic.

Cite

CITATION STYLE

APA

Yang, Q., Lin, Z., Xue, M., Jiang, Y., Chen, L., Chen, J., … Sun, B. (2024). Deciphering the omicron variant: integrated omics analysis reveals critical biomarkers and pathophysiological pathways. Journal of Translational Medicine, 22(1). https://doi.org/10.1186/s12967-024-05022-z

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free