Exploration of chemical space with partial labeled noisy student self-training and self-supervised graph embedding

3Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: Drug discovery is time-consuming and costly. Machine learning, especially deep learning, shows great potential in quantitative structure–activity relationship (QSAR) modeling to accelerate drug discovery process and reduce its cost. A big challenge in developing robust and generalizable deep learning models for QSAR is the lack of a large amount of data with high-quality and balanced labels. To address this challenge, we developed a self-training method, Partially LAbeled Noisy Student (PLANS), and a novel self-supervised graph embedding, Graph-Isomorphism-Network Fingerprint (GINFP), for chemical compounds representations with substructure information using unlabeled data. The representations can be used for predicting chemical properties such as binding affinity, toxicity, and others. PLANS-GINFP allows us to exploit millions of unlabeled chemical compounds as well as labeled and partially labeled pharmacological data to improve the generalizability of neural network models. Results: We evaluated the performance of PLANS-GINFP for predicting Cytochrome P450 (CYP450) binding activity in a CYP450 dataset and chemical toxicity in the Tox21 dataset. The extensive benchmark studies demonstrated that PLANS-GINFP could significantly improve the performance in both cases by a large margin. Both PLANS-based self-training and GINFP-based self-supervised learning contribute to the performance improvement. Conclusion: To better exploit chemical structures as an input for machine learning algorithms, we proposed a self-supervised graph neural network-based embedding method that can encode substructure information. Furthermore, we developed a model agnostic self-training method, PLANS, that can be applied to any deep learning architectures to improve prediction accuracies. PLANS provided a way to better utilize partially labeled and unlabeled data. Comprehensive benchmark studies demonstrated their potentials in predicting drug metabolism and toxicity profiles using sparse, noisy, and imbalanced data. PLANS-GINFP could serve as a general solution to improve the predictive modeling for QSAR modeling.

Cite

CITATION STYLE

APA

Liu, Y., Lim, H., & Xie, L. (2022). Exploration of chemical space with partial labeled noisy student self-training and self-supervised graph embedding. BMC Bioinformatics, 23. https://doi.org/10.1186/s12859-022-04681-3

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free