What is particularly worth remembering about a traumatic experience is what brought it about, and what made it cease. For example, fruit flies avoid an odor which during training had preceded electric shock punishment; on the other hand, if the odor had followed shock during training, it is later on approached as a signal for the relieving end of shock. We provide a neurogenetic analysis of such relief learning. Blocking, using UAS-shibirets1, the output from a particular set of dopaminergic neurons defined by the TH-Gal4 driver partially impaired punishment learning, but left relief learning intact. Thus, with respect to these particular neurons, relief learning differs from punishment learning. Targeting another set of dopaminergic/serotonergic neurons defined by the DDC-Gal4 driver on the other hand affected neither punishment nor relief learning. As for the octopaminergic system, the tbhM18 mutation, compromising octopamine biosynthesis, partially impaired sugar-reward learning, but not relief learning. Thus, with respect to this particular mutation, relief learning, and reward learning are dissociated. Finally, blocking output from the set of octopaminergic/tyraminergic neurons defined by the TDC2-Gal4 driver affected neither reward, nor relief learning. We conclude that regarding the used genetic tools, relief learning is neurogenetically dissociated from both punishment and reward learning. This may be a message relevant also for analyses of relief learning in other experimental systems including man. © 2010 Yarali and Gerber.
CITATION STYLE
Yarali, A., & Gerber, B. (2010). A neurogenetic dissociation between punishment-, reward, and relief-learning in Drosophila. Frontiers in Behavioral Neuroscience, 4(DEC). https://doi.org/10.3389/fnbeh.2010.00189
Mendeley helps you to discover research relevant for your work.