Enhanced fixed-size parallel speedup with the Muskingum method using a trans-boundary approach and a large subbasins approximation

22Citations
Citations of this article
15Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

This study presents a new algorithm for parallel computation of river flow that builds on recent work demonstrating the relative independence of distant river reaches in the update step of the Muskingum method. The algorithm is designed to achieve enhanced fixed-size parallel speedup and uses a mathematical approximation applied at the boundaries of large subbasins. In order to use such an algorithm, a balanced domain decomposition method that differs from the traditional classifications of river reaches and subbasins and based on network topology is developed. An application of the algorithm and domain decomposition method to the Mississippi River Basin results in an eightfold decrease in computing time with 16 computing cores which is unprecedented for Muskingum-type algorithms applied in classic parallel-computing paradigms having a one-to-one relationship between cores and subbasins. An estimated 300 km between upstream and downstream reaches of subbasins guarantees the applicability of the algorithm in our study and motivates further investigation of domain decomposition methods.

Cite

CITATION STYLE

APA

David, C. H., Famiglietti, J. S., Yang, Z. L., & Eijkhout, V. (2015). Enhanced fixed-size parallel speedup with the Muskingum method using a trans-boundary approach and a large subbasins approximation. Water Resources Research, 51(9), 7547–7571. https://doi.org/10.1002/2014WR016650

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free