For special instruments or equipments including particle accelerators, space microwave devices and spacecrafts, the suppression for electron-induced secondary electron emission (SEE) occurring on the component surfaces is of great significance due to a negative influence caused by SEE on their normal operations. In this paper, amorphous carbon (a-C) films were prepared on stainless-steel substrates by radio frequency magnetron sputtering, and the effects of substrate temperature (Ts) and continuous electron bombardment on the microstructure and secondary electron emission yield (SEY) of a-C film were investigated in order to achieve a better inhibition for SEE. The experimental results show that a rise of Ts during the a-C film preparation is conducive to a SEY reduction and an increase of multipactor threshold due to the increases of surface roughness and sp2 bond content. In addition, although the SEY of a-C film has a slight increase with the rise of electron bombardment time, the a-C film sample with a lower SEY keeps its lower SEY all the time during continuous electron bombardment. The a-C film prepared at Ts of 500 °C has the lowest SEY peak value of 1.09 with a reduction of 30.6% in comparison with the stainless-steel substrate.
CITATION STYLE
Li, J., Yi, X., Hu, W., Gao, B., Li, Y., Wu, S., … Zhang, J. (2019). Substrate temperature dependent microstructure and electron-induced secondary electron emission properties of magnetron sputter-deposited amorphous carbon films. Materials, 12(16). https://doi.org/10.3390/ma12162631
Mendeley helps you to discover research relevant for your work.