Particle formation and risk of embolization during transseptal catheterization: Comparison of standard transseptal needles and a new radiofrequency transseptal needle

23Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Objective: Anecdotally, the Brockenbrough transseptal needle generates plastic particles through a process of skiving (shaving off particles), when advanced through the dilator and sheath. This study was performed to assess particle creation by the Brockenbrough needle during transseptal catheterization. We explore strategies that may reduce this phenomenon, including use of the Brockenbrough stylet and a radiofrequency transseptal needle. Method: In vitro simulations of transseptal catheterization were performed using Brockenbrough transseptal needles and a new radiofrequency transseptal needle. Particles that were created during advancement of transseptal needles through the sheath and dilator were collected and analyzed. Particles in the visible range of 50 μm to 4 mm were identified using a light microscope, whereas particles in the sub-visible, yet clinically relevant range of 10 to 50 μm, were counted using a light obscuration method. Results: All simulated procedures using the Brockenbrough transseptal needles, with or without a stylet, generated visible particles. Simulated procedures with the radiofrequency transseptal needle generated no visible particles. A greater number of sub-visible particles were generated with the standard Brockenbrough transseptal needle (BKR-1) without stylet compared with the standard Brockenbrough needle (BRK-1) with stylet, the Brockenbrough extra sharp (BRK-1XS) needle with or without stylet, and the radiofrequency needle (NRG C1). Conclusion: Clinically relevant particles, both visible and sub-visible, with the potential for causing embolic complications, are generated by the BRK-1 needle without stylet. Use of a stylet in the BRK-1 needle, or the BRK-1XS needle with or without stylet, appears to reduce the size and amount of particles created. The NRG C1 needle appears to eliminate visible particles and is comparable to the BRK-1 with stylet and the BRK-1XS with or without stylet in generation of sub-visible particles. Important steps can be taken to minimize the creation of particles during the advancement of the BRK-1 through the transseptal sheath and dilator. © 2011 The Author(s).

Cite

CITATION STYLE

APA

Feld, G. K., Tiongson, J., & Oshodi, G. (2011). Particle formation and risk of embolization during transseptal catheterization: Comparison of standard transseptal needles and a new radiofrequency transseptal needle. Journal of Interventional Cardiac Electrophysiology, 30(1), 31–36. https://doi.org/10.1007/s10840-010-9531-3

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free