Evolution of microstructure during heat-induced gelation of β-lactoglobulin (β-LG) was investigated in situ using confocal laser scanning microscopy at various gel-preparation conditions: pH=2, 5, and 7; protein content=5, 10, and 15%; and salt (NaCl) content=0, 0.1, and 0.3 M. The number and area of evolving β-LG clusters were observed as a function of time and temperature and the data were fitted to a log-normal model and sigmoid model, respectively. The gelation temperature (Tgel) of the β-LG system was determined from both the number (Tgel/N) and total area (Tgel/A) of β-LG clusters versus temperature data. The range of Tgel/N and Tgel/A values for all the cases was 68 to 87°C. The effect of pH was the most dominant on Tgel/N and Tgel/A, whereas the effects of β-LG and salt contents were also statistically significant. Therefore, the combined effect of protein concentration, pH, and salt content is critical to determine the overall gel microstructure and Tgel. The Tgel/N and Tgel/A generally agreed well with Tgel determined by dynamic rheometry (Tgel/R). The correlations between Tgel/N and Tgel/A versus Tgel/R were 0.85 and 0.72, respectively. In addition, Tgel/N and Tgel/A values compared well with Tgel/R values reported in the literature. Based on these results, Tgel/N determined via in situ microscopy appears to be a fairly good representative of the traditionally measured gelation temperature, Tgel/R. © 2013 American Dairy Science Association.
CITATION STYLE
Woo, H. D., Moon, T. W., Gunasekaran, S., & Ko, S. (2013). Determining the gelation temperature of β-lactoglobulin using in situ microscopic imaging. Journal of Dairy Science, 96(9), 5565–5574. https://doi.org/10.3168/jds.2013-6786
Mendeley helps you to discover research relevant for your work.