Hyperspectral images (HSI) provide a new way to exploit the internal physical composition of the land scene. The basic platform for acquiring HSI data-sets are airborne or spaceborne spectral imaging. Retrieving useful information from hyperspectral images can be grouped into four categories. (1) Classification: Hyperspectral images provide so much spectral and spatial information that remotely sensed image classification has become a complex task. (2) Endmember extraction and spectral unmixing: Among images, only HSI have a complete model to represent the internal structure of each pixel where the endmembers are the elements. Identification of endmembers from HSI thus becomes the foremost step in interpretation of each pixel. With proper endmembers, the corresponding abundances can also be exactly calculated. (3) Target detection: Another practical problem is how to determine the existence of certain resolved or full pixel objects from a complex background. Constructing a reliable rule for separating target signals from all the other background signals, even in the case of low target occurrence and high spectral variation, comprises the key to this problem. (4) Change detection: Although change detection is not a new problem, detecting changes from hyperspectral images has brought new challenges, since the spectral bands are so many, accurate band-to-band correspondences and minor changes in subclass land objects can be depicted in HSI. In this paper, the basic theory and the most canonical works are discussed, along with the most recent advances in each aspect of hyperspectral image processing. © 2012 Wuhan University.
CITATION STYLE
Zhang, L., & Du, B. (2012). Recent advances in hyperspectral image processing. Geo-Spatial Information Science, 15(3), 143–156. https://doi.org/10.1080/10095020.2012.719684
Mendeley helps you to discover research relevant for your work.