The local cytokine environment and the presence of stimulatory signals determine whether monocytes acquire dendritic cell or macrophage characteristics and functions. In this study, we examined the effect of histamine, a prototypic mediator of allergic inflammation, on the granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin (IL)-4-driven differentiation of monocytes into monocyte-derived dendritic cells (MoDC), which typically showed CD1a+CD14- phenotype. Monocytes from healthy adult donors were cultured with GM-CSF and IL-4 in the presence or absence of histamine, and the phenotypes and function of these cells were analyzed. Histamine induced the generation of CD1a-CD14+ cells, which exhibited cytological and phenotypical characteristics of dendritic cells (DC), showed enhanced phagocytic activity and cytokine-producing capacity, but demonstrated weak allo-stimulatory capacity compared with CD1a+CD14- MoDC. The inhibitory effects of histamine on CD1a+CD14- MoDC differentiation were antagonized by cimetidine, an H2 receptor antagonist, but not by H1 and H3 receptor blockers, and were mimicked by an H2 receptor agonist. Culture supernatant of histamine-treated monocytes also inhibited CD1a+CD14- MoDC differentiation, which was restored by the removal of IL-10. These results suggest that histamine-driven CD1a-CD14+ DC amplify their antigen-independent inflammatory reaction and may contribute to the exacerbation of allergic diseases. Copyright © 2005 by The Society for Investigative Dermatology, Inc.
CITATION STYLE
Katoh, N., Soga, F., Nara, T., Masuda, K., & Kishimoto, S. (2005). Histamine induces the generation of monocyte-derived dendritic cells that express CD14 but not CD1a. Journal of Investigative Dermatology, 125(4), 753–760. https://doi.org/10.1111/j.0022-202X.2005.23891.x
Mendeley helps you to discover research relevant for your work.