BRCA1 plays an important role in the homologous recombination (HR)-mediated DNA double-strand break (DSB) repair, but the mechanism is not clear. Here we describe that BRCA1 forms a complex with CtIP and MRN (Mre11/Rad50/Nbs1) in a cell cycle-dependent manner. Significantly, the complex formation, especially the ionizing radiation-enhanced association of BRCA1 with MRN, requires cyclin-dependent kinase activity. CtIP directly interacts with Nbs1. The in vivo association of BRCA1 with MRN is largely dependent on the association of CtIP with the BRCT domains at the C terminus of BRCA1, whereas the N terminus of BRCA1 also contributes to its association with MRN. CtIP, as well as the interaction of BRCA1 with CtIP and MRN, is critical for IR-induced single-stranded DNA formation and cellular resistance to radiation. Consistently, CtIP itself is required for efficient HR-mediated DSB repair, like BRCA1 and MRN. These studies suggest that the complex formation of BRCA1·CtIP·MRN is important for facilitating DSB resection to generate single-stranded DNA that is needed for HR-mediated DSB repair. Because cyclin-dependent kinase is important for establishing IR-enhanced interaction of MRN with BRCA1, we propose that the cell cycle-dependent complex formation of BRCA1, CtIP, and MRN contributes to the activation of HR-mediated DSB repair in the S and G2 phases of the cell cycle.
CITATION STYLE
Chen, L., Nievera, C. J., Lee, A. Y. L., & Wu, X. (2008). Cell cycle-dependent complex formation of BRCA1·CtIP·MRN is important for DNA double-strand break repair. Journal of Biological Chemistry, 283(12), 7713–7720. https://doi.org/10.1074/jbc.M710245200
Mendeley helps you to discover research relevant for your work.