Physical and electrical characterization of TexasPEG: An electrically conductive neuronal scaffold

7Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

Background: Graphene and its derivatives have been shown to be biocompatible and electrically active materials upon which neurons readily grow. The fusogen poly(ethylene glycol) (PEG) has been shown to improve outcomes after cervical and dorsal spinal cord transection. The long and narrow PEGylated graphene nanoribbon stacks (PEG-GNRs) with their 5 μm × 200 nm × 10 nm dimensions can provide a scaffold upon which neurons can grow and fuse. We disclose here the extensive characterization data for the PEG-GNRs. Methods: PEG-GNRs were chemically synthesized and chemically and electrically characterized. Results: The average aspect ratio of the PEG-GNRs was determined to be ~85, which corresponds to a critical percolation value (the point where insulating material becomes conductive by addition of conductive particles) of 1%. However, there was not a sharp increase in AC conductivity at frequencies relevant to action potentials. Conclusion: A robust characterization of PEG-GNRs is discussed, though the precise origin of efficacy in improving outcomes following spinal cord transection is not known.

Author supplied keywords

Cite

CITATION STYLE

APA

Sikkema, W., Metzger, A., Wang, T., & Tour, J. (2017). Physical and electrical characterization of TexasPEG: An electrically conductive neuronal scaffold. Surgical Neurology International, 8(1). https://doi.org/10.4103/sni.sni_361_16

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free