Epidermal Growth Factor in Healing Diabetic Foot Ulcers: From Gene Expression to Tissue Healing and Systemic Biomarker Circulation

10Citations
Citations of this article
55Readers
Mendeley users who have this article in their library.

Abstract

Lower-extremity diabetic ulcers are responsible for 80% of annual worldwide nontraumatic amputations. Epidermal growth factor (EGF) reduction is one of the molecular pillars of diabetic ulcer chronicity, thus EGF administration may be considered a type of replacement therapy. Topical EGF administration to improve and speed wound healing began in 1989 on burn patients as part of an acute-healing therapy. Further clinical studies based on topically administering EGF to diff erent chronic wounds resulted in disappointing outcomes. An analysis of the literature on unsuccessful clinical trials identifi ed a lack of knowledge concerning: (I) molecular and cellular foundations of wound chronicity and (II) the pharmacodynamic requisites governing EGF interaction with its receptor to promote cell response. Yet, EGF intra- A nd perilesional infi ltration were shown to circumvent the pharmacodynamic limitations of topical application. Since the fi rst studies, the following decades of basic and clinical research on EGF therapy for problem wounds have shed light on potential uses of growth factors in regenerative medicine. EGF's molecular and biochemical eff ects at both local and systemic levels are diverse: (1) downregulation of genes encoding infl ammation mediators and increased expression of genes involved in cell proliferation, angiogenesis and matrix secretion; (2) EGF intervention positively impacts both mesenchymal and epithelial cells, reducing infl ammation and stimulating the recruitment of precursor circulating cells that promote the formation of new blood vessels; (3) at the subcellular level, upregulation of the EGF receptor with subsequent intracellular traffi cking, including mitochondrial allocation along with restored morphology of multiple organelles; and (4) local EGF infi ltration resulting in a systemic, organismal repercussion, thus contributing to attenuation of circulating infl ammatory and catabolic reactants, restored reduction-oxidation balance, and decreased toxic glycation products and soluble apoptogenic eff ectors. It is likely that EGF treatment may rearrange critical epigenetic drivers of diabetic metabolic memory.

Cite

CITATION STYLE

APA

Berlanga-Acosta, J., Camacho-Rodríguez, H., Mendoza-Marí, Y., Falcón-Cama, V., Garciá-Ojalvo, A., Herrera-Martínez, L., & Guillén-Nieto, G. (2020). Epidermal Growth Factor in Healing Diabetic Foot Ulcers: From Gene Expression to Tissue Healing and Systemic Biomarker Circulation. MEDICC Review, 22(3), 24–31. https://doi.org/10.37757/MR2020.V22.N3.7

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free